17 New Existences linear [n,3,d]19 Codes by Geometric Structure Method in PG(2,19)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Ring-Linear Codes from Geometric Dualization

In the 1960s and 1970s the Nordstrom-Robinson-Code [30] and subsequently the infinite series of the Preparata[31], Kerdock[21], Delsarte-Goethals[6] and Goethals-Codes [7] were discovered. Apart from a few corner cases, all of these codes are non-linear binary block codes that have higher minimum distance than any known comparable (having equal size and length) linear binary code. We will call ...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Construction of Optimal Linear Codes by Geometric Puncturing

Geometric puncturing is a method to construct new codes from a given [n, k, d]q code by deleting the coordinates corresponding to some geometric object in PG(k − 1, q). We construct [gq(4, d), 4, d]q and [gq(4, d)+1, 4, d]q codes for some d by geometric puncturing, where gq(k, d) = ∑k−1 i=0 ⌈

متن کامل

Which linear codes are algebraic-geometric?

An infinite series of curves is constructed in order to show that all linear codes can be obtained from curves using Goppa's construction. If one imposes conditions on the degree of the divisor used, then we derive criteria for linear codes to be algebraic-geometric. In particular, we investigate the family of q-ary Hamming codes, and prove that only those with redundancy one or two, and the bi...

متن کامل

Linear Secret Sharing from Algebraic-Geometric Codes

It is well-known that the linear secret-sharing scheme (LSSS) can be constructed from linear error-correcting codes (Brickell [1], R.J. McEliece and D.V.Sarwate [2],Cramer, el.,[3]). The theory of linear codes from algebraic-geometric curves (algebraic-geometric (AG) codes or geometric Goppa code) has been well-developed since the work of V.Goppa and Tsfasman, Vladut, and Zink( see [17], [18] a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AL-Rafidain Journal of Computer Sciences and Mathematics

سال: 2020

ISSN: 2311-7990

DOI: 10.33899/csmj.2020.163503